

TRINITY COLLEGE FOR WOMEN NAMAKKAL Department of Mathematics

ADVANCED ALGEBRA 23PMA04– EVEN SEMESTER

GALOIS THEORY

Presented by Dr. S. JEYANTHI Assistant Professor Department of Mathematics http://www.trinitycollegenkl.edu.in/

FIELDS AND AUTOMORPHISMS

A field F is a set with invertible multiplication and addition such that the distributive property holds. It is a generalization of Q. A field homomorphism is a map to another field that commutes with both operations.

They are either injective or trivial. A field automorphism is an isomorphism from F to itself. **Field automorphism are invertible** and can be composed, so they can form a group. **PRIME SUBFIELDS:** The field F has a multiplicative

identity 1. Let σ be any automorphism of F. Let k be an element of the form $(1 + \cdots +$

If F is finite, it is the ring Z/pZ for some prime p. **FUNDAMENTAL IDEAS** An object's group of symmetries contains important information about that object. **Polynomials define algebraic behavior** and thus can be used to create new mathematical

objects. Galois theory is usually described as the study of field automorphisms and polynomials over fields. FIELD EXTENSIONS: When F is a subfield of E, we say that E is an extension of F and write E and E/F. **Extensions can be created by adjoining roots of**

polynomials.

The automorphism group of a field is Aut(E). The automorphism group of a field E fixing a subfield F is Aut(E/F). For a prime subfield Q, Aut(E)=Aut(E/Q). **MORE ON FIELD EXTENSIONS: Example:**

Adjoining $\sqrt{2}$ to *Q* to get $Q(\sqrt{2})$

 $\sqrt{2}$ is a root of the irreducible polynomial x^2 – 2; we define $Q(\sqrt{2})$ as the set of elements of the form $a + b\sqrt{2}$ where a and b are rational. This is isomorphic to the quotient $Q[x]/(x^2 - x^2)$ 2). **Another example:** $x^2 + 1$ is irreducible over R. We define *i* as one of its roots and adjoin it to get

 $\sqrt{2}$ is a root of the irreducible polynomial $x^2 - 2$; we define $Q(\sqrt{2})$ as the set of elements of the form $a + b\sqrt{2}$ where a and b are rational. This is isomorphic to the quotient Q x $/(x^2-2)$.

THANK YOU

http://www.trinitycollegenkl.edu.in/