

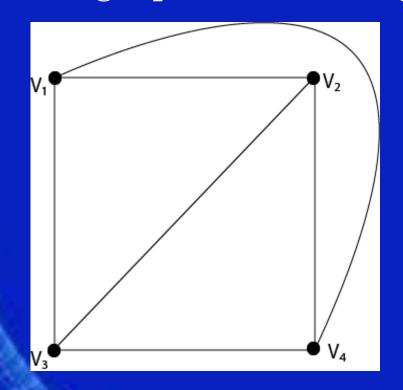
TRINITY COLLEGE FOR WOMEN NAMAKKAL Department of Mathematics

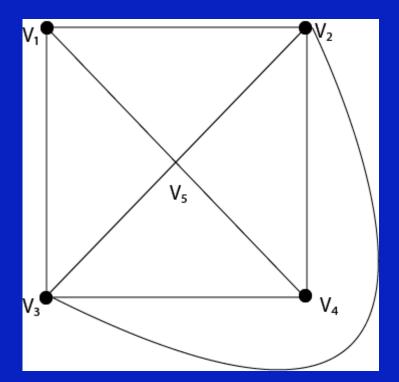
GRAPH THEORY & APPLICATIONS 23PMAE02 - EVEN Semester

Introduction to Planar & Nonplanar Graphs

Presented by Mrs. S. Madhukaraveni Assistant Professor Department of Mathematics http://www.trinitycollegenkl.edu.in/

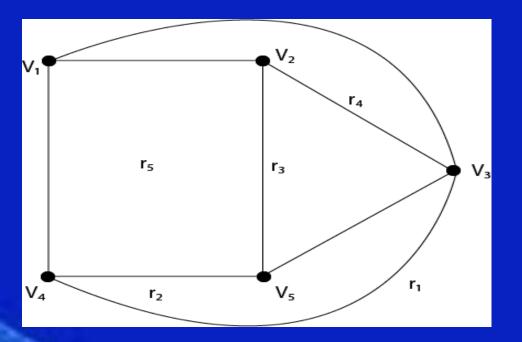
A graph is said to be planar if it can be drawn in a plane so that no edge cross. **Example:** The graph shown in fig is planar graph.





Region of a Graph Consider a planar graph G=(V,E). A region is <u>defined to</u> be an area of the plane that is bounded by edges and cannot be further subdivided. A planar graph divides the plans into one or more regions. One of these regions will be infinite. **Finite Region** If the area of the region is finite, then that region is called a finite region.

Infinite Region: If the area of the region is infinite, that region is called a infinite region. A planar graph has only one infinite region.
Example: Consider the graph shown in Fig. Determine the number of regions, finite regions and an infinite region.

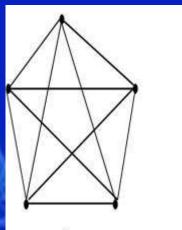


Solution:

There are five regions in the above graph, i.e. r_1, r_2, r_3, r_4, r_5 . There are four finite regions in the graph, i.e., r_2, r_3, r_4, r_5 . There is only one finite region, 1.e., r₁ **Properties of Planar Graphs:** 1. If a connected planar graph G has e edges and r regions, then $r \leq e$. 2. If a connected planar graph G has e edges, v vertices, and r regions, then v-e+r=2. 3. If a connected planar graph G has e edges and v vertices, then $3v-e \ge 6$.

- A complete graph K_n is a planar if and only if n<5.
- 5.A complete bipartite graph K_{mn} is planar if and only if m<3 or n>3.
- **Example:**
- Prove that complete graph K_4 is planar. Solution:
- The complete graph K_4 contains 4 vertices and 6 edges.
- We know that for a connected planar graph $3v-e \ge 6$. Hence for K_4 , we have 3x4-6=6 which satisfies the property (3).
- Thus K_4 is a planar graph. Hence Proved.

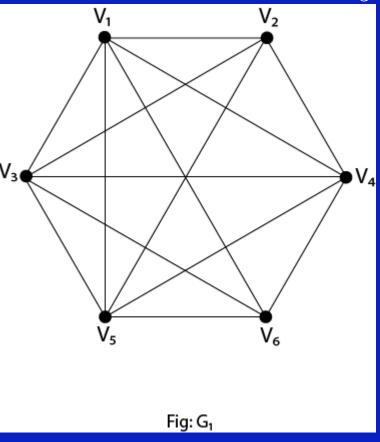
Non-Planar Graph: A graph is said to be non planar if it cannot be drawn in a plane so that no edge cross. **Example:** The graphs shown in fig are non planar graphs.

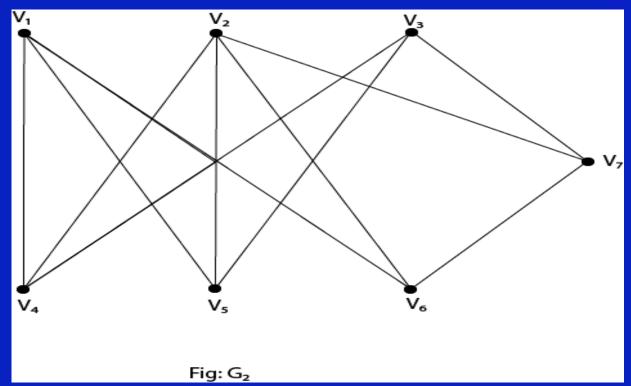


These graphs cannot be drawn in a plane so that no edges cross hence they are non-planar graphs. Properties of Non-Planar Graphs: A graph is non-planar if and only if it contains a subgraph homeomorphic to K_5 or $K_{3,3}$

Example1: Show that K_5 is non-planar. Solution: The complete graph K_5 contains 5 vertices and 10 edges. Now, for a connected planar graph $3v-e\geq 6$. Hence, for K_5 , we have $3 \ge 5 \cdot 10 = 5$ (which does not satisfy property 3 because it must be greater than or equal to 6). Thus, K_5 is a non-planar graph.

Example2: Show that the graphs shown in fig are non-planar by finding a subgraph homeomorphic to K_5 or $K_{3,3}$.





Solution: If we remove the edges $(V_1, V_4), (V_3, V_4)$ and (V_5, V_4) the graph G_1 , becomes homeomorphic to K_5 . Hence it is non-planar. If we remove the edge $V_{2,V}$?) the graph G_2 becomes homeomorphic to $K_{3,3}$. Hence it is a non-planar.

THANK YOU

http://www.trinitycollegenkl.edu.in/