

TRINITY COLLEGE FOR WOMEN NAMAKKAL Department of Mathematics

REAL ANALYSIS- I 23PMA02- ODD SEMESTER

SEQUENCE OF FUNCTIONS

Presented by Mrs. V.GOKILA Assistant Professor Department of Mathematics http://www.trinitycollegenkl.edu.in/

POINTWISE CONVERGENCE OF SEQUENCE OF FUNCTIONS

Solutions the sequence $\{f_n\}$ whose terms are real or complex valued functions having a domain on the real line \mathbb{R} or in the complex plane \mathbb{C} .

For each x in the domain consider the sequence $\{f_n(x)\}\$ whose terms are the corresponding function values.

Let S denote the set of x for which this sequence converges. S The function f defined by the equation

 $\lim_{n \to \infty} f_n(x) = f(x) \quad \text{ if } x \in S,$

is called the Limit Function of the sequence $\{f_n\}$, and we say that $\{f_n\}$ converges pointwise to f on the set S.

Solution The continuity of each f_n at c implies the continuity of the limit function f at c.

ie)
$$\lim_{x \to c} f_n(x) = f_n(c)$$

$$\Rightarrow \qquad \lim_{x \to c} f(x) = f(c)$$

is can be written as follows;

$$\lim_{x \to c} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to c} f_n(x)$$

EXAMPLES OF SEQUENCES OF REAL-VALUES FUNCTIONS Example:1

Solve A sequence of continuous function with a discontinuous limit function $f_n(x) = \frac{x^{2n}}{1+x^{2n}}$ if $x \in \mathbb{R}$, n=1,2,3,....

Example:2

So The limit of the integral is need not be equal to the integral of the limit $f_n(x) = n^2 x (1-x)^n$ if $x \in \mathbb{R}$, n=1,2,3,....

Example:3

So The derivative of converges function is need not be converges $f_n(x) = \frac{sinnx}{\sqrt{n}}$ if $x \in \mathbb{R}$, n=1,2,3,....

UNIFORMLY CONVERGES

A sequence of functions $\{f_n\}$ is said to converge uniformly to f on a set S, if for every $\mathcal{E} > 0$ there exists an N (depending only on \mathcal{E}) such that N>N $\Rightarrow |f_n(x) - f(x)| < \mathcal{E}$ for every x in S. ie) $f_n \rightarrow f$ uniformly on S.

UNIFORMLY BOUNDED

Solution A sequence of functions $\{f_n\}$ is said to bounded on S if there exists a constant M > 0 such that $|f_n(x)| \le M$ for all x in S, and all n.

The number M is called a uniform bound for $\{f_n\}$.

Solution If each individual function is bounded and if f_n → f uniformly on S, then we say that $\{f_n\}$ is uniformly bounded on S.

UNIFORM CONVERGENCE AND CONTINUITY

Assume that $f_n \to f$ uniformly on S. If each f_n is continuous at a point c of S. Then the limit function f is also continuous at c. ie) $\lim_{x \to c} \lim_{n \to \infty} \frac{f_n(x) = \lim_{n \to \infty} \lim_{x \to c} f_n(x)}{\lim_{x \to c} \lim_{n \to \infty} \frac{f_n(x) = \lim_{n \to \infty} \lim_{x \to c} \frac{f_n(x)}{n}}{\lim_{x \to c} \lim_{x \to c} \frac{f_n(x)}{n}}$

CAUCHY CONDITION FOR UNIFORM CONVERGENCE

Let $\{f_n\}$ be a sequence of functions defined on a set S. There exists a function f such that $f_n \rightarrow f$ uniformly on S iff the following condition is satisfied;

For every $\mathcal{E} > 0$ there exists an N such that m>N and n>N implies $|f_m(x)-f_n(x)| < \mathcal{E}$ for every x in S.

WEIERSTRASS M-TEST

Let $\{M_n\}$ be a sequence of non-negative numbers such that $0 \le |f_n(x)| \le M_n$, for n=1,2,3,... and for every x in S. Then $\sum f_n(x)$ converges uniformly on S if $\sum M_n$ converges.

EXAMPLE:

Solution Section Section Section Which is not uniformly convergence Let $f_n(x) = x^2$ if $0 \le x \le 1$

The convergence is not uniform on [0,1], Since the sequence of continuous functions with discontinuous limit.

PROPERTIES OF UNIFORM CONVERGENCE OF SEQUENCE OF FUNCTIONS:

 f_n is bounded \Rightarrow f is bounded

 $\leq f$ Each f_n is Riemann integrable on $[a,b] \Rightarrow f$ is Riemann integrable on [a,b]

 $\mathcal{E}_{\mathcal{O}}$ Each f_n is continuous \Rightarrow f is continuous

 $\frac{f_n}{f_n}$ is differentiable \Rightarrow f is differentiable

BOUNDEDLY CONVERGENT

A sequence of functions $\{f_n\}$ is said to be boundedly convergent on T if $\{f_n\}$ is pointwise convergent and uniformly bounded on T.

Let $\{f_n\}$ be a boundedly convergent sequence on[a,b]. Assume that each $f_n \in \mathbb{R}$ on [a,b], and that the limit function $f \in \mathbb{R}$ on [a,b]. Assume also that there is a partition P of [a,b], say $P = \{X_0, X_1, X_2, X_3, ..., X_n\}$ such that on every subinterval [c,d] not containing any of the points $X_{k, j}$ the sequence $\{f_n\}$ converges uniformly to f. Then we have

$$\lim_{n \to \infty} \int_a^b f_n(t) \, \mathrm{dt} = \int_a^b \lim_{n \to \infty} f_n(t) \, \mathrm{dt} = \int_a^b f(t) \, \mathrm{dt}.$$

UNIFORM CONVERGENCE AND DIFFERENTIATION

THEOREM:

Assume that each term of $\{f_n\}$ is a real-valued function having a finite derivative at each point of an open interval (a,b). Assume that for atleast one point X₀ in (a,b) the sequence $\{f_n(X_0)\}$ converges. Assume further that there exists a function g such that $f'_n \to g$ uniformly on (a,b). Then

a) There exists a function f such that f_n → f uniformly on (a,b).
b) For each x in (a,b) the derivative f '(x) exists and equals g(x).

Let $\{f_n\}$ be a sequence of Riemann-integrable functions defined on [a,b]. Assume that $f \in \mathbb{R}$ on [a,b]. The sequence $\{f_n\}$ is said to converge the mean to f on [a,b],

And we write

$$\lim_{n \to \infty} f_n = f \qquad \text{on } [a,b].$$

if

 $\lim_{n\to\infty}\int_a^b |f_n(x) - f(x)|^2 \,\mathrm{d} x = 0.$

If the inequality $|f(x) - f_n(x)| < \varepsilon$ holds for every x in [a,b], then we have $\int_a^b |f(x) - f_n(x)|^2 dx \le \varepsilon^2$ (b-a). Therefore uniform convergence of $\{f_n\}$ to f on [a,b] implies mean convergence.

THANK YOU

http://www.trinitycollegenkl.edu.in/