

TRINITY COLLEGE FOR WOMEN NAMAKKAL Department of Mathematics

REAL ANALYSIS- I 23PMA02- ODD SEMESTER

SEQUENCE OF FUNCTIONS

Presented by Mrs. V.GOKILA Assistant Professor Department of Mathematics http://www.trinitycollegenkl.edu.in/

 \mathcal{S} The sequence $\{f_n\}$ whose terms are real or complex valued functions having a domain on the real line R or in the complex plane $\mathbb{C}.$

For each x in the domain consider the sequence $\{f_n(x)\}$ whose terms are the corresponding function values.

Let S denote the set of x for which this sequence converges. ֍ The function f defined by the equation

> lim $\lim_{n\to\infty} f_n(x) = f(x)$ if $x \in S$,

is called the Limit Function of the sequence $\{f_n\}$, and we say that ${f_n}$ converges pointwise to f on the set S.

 \mathcal{S}_n The continuity of each f_n at c implies the continuity of the limit function f at c.

i.e)

\n
$$
\lim_{x \to c} f_n(x) = f_n(c)
$$
\n
$$
\Rightarrow \lim_{x \to c} f(x) = f(c)
$$
\nIt can be written as follows;

\n
$$
\lim_{x \to c} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to c} f_n(x).
$$

Examples of sequences of real-values functions Example:1

֍ A sequence of continuous function with a discontinuous limit function $f_n(x) = \frac{x^{2n}}{1 + x^2}$ $\frac{x}{1+x^{2n}}$ if $x \in \mathbb{R}$, n=1,2,3,...

Example:2

֍ The limit of the integral is need not be equal to the integral of the limit $f_n(x) = n^2 x (1 - x)^n$ if $x \in \mathbb{R}$, n=1,2,3,...

Example:3

֍ The derivative of converges function is need not be converges $f_n(x) = \frac{\sin nx}{\sqrt{n}}$ \sqrt{n} if $x \in \mathbb{R}$, n=1,2,3,...

A sequence of functions $\{f_n\}$ is said to converge uniformly to f on a set S, if for every $\epsilon > 0$ there exists an N (depending only on ϵ) such that $N>N \Rightarrow |f_n(x)-f(x)| < \varepsilon$ for every x in S. ie) $f_n \to f$ uniformly on S.

 \mathcal{S} A sequence of functions $\{f_n\}$ is said to bounded on S if there exists a constant M > 0 such that $| f_n(x) | \leq M$ for all x in S, and all n.

The number M is called a uniform bound for $\{f_n\}$.

 \mathcal{S} If each individual function is bounded and if f_n → f uniformly on S, then we say that $\{f_n\}$ is uniformly bounded on S.

Assume that $f_n \to f$ uniformly on S. If each f_n is continuous at a point c of S, Then the limit function f is also continuous at c. ie) lim $x\rightarrow c$ lim $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty}$ lim $\lim_{x\to c} f_n(x)$.

Let $\{f_n\}$ be a sequence of functions defined on a set S. There exists a function f such that $f_n \to f$ uniformly on S iff the following condition is satisfied;

For every $\epsilon > 0$ there exists an N such that m>N and n>N implies $|f_m(x)-f_n(x)| < \varepsilon$ for every x in S.

Let ${M_n}$ be a sequence of non-negative numbers such that $0 \leq |f_n(x)| \leq M_n$, for n=1,2,3,... and for every x in S. Then $\sum f_n(x)$ converges uniformly on S if $\sum M_n$ converges.

֍ Example for a function which is not uniformly convergence Let $f_n(x) = x^2$ if $0 \le x \le 1$

The convergence is not uniform on [0,1], Since the sequence of continuous functions with discontinuous limit.

 $\frac{1}{n}$ Each f_n is bounded ⇒ f is bounded

 \leq : Each f_n is Riemann integrable on [a,b] \Rightarrow f is Riemann integrable on [a,b]

 $\frac{1}{2}$ Each f_n is continuous ⇒ f is continuous

 $\frac{1}{n}$ Each f_n is differentiable ⇒ f is differentiable

A sequence of functions $\{f_n\}$ is said to be boundedly convergent on T if $\{f_n\}$ is pointwise convergent and uniformly bounded on T.

Let $\{f_n\}$ be a boundedly convergent sequence on[a,b]. Assume that each $f_n \in \mathbb{R}$ on [a,b], and that the limit function $f \in \mathbb{R}$ on [a,b]. Assume also that there is a partition P of [a,b], say $P = \{X_0, X_1, X_2, X_3, \ldots, X_n\}$ such that on every subinterval [c,d] not containing any of the points X_{k} , the sequence ${f_n}$ converges uniformly to f. Then we have

$$
\lim_{n \to \infty} \int_a^b f_n(t) \, dt = \int_a^b \lim_{n \to \infty} f_n(t) \, dt = \int_a^b f(t) \, dt.
$$

THEOREM:

Assume that each term of ${f_n}$ is a real-valued function having a finite derivative at each point of an open interval (a,b). Assume that for atleast one point X_0 in (a,b) the sequence $\{f_n(\mathsf{X}_0)\}$ converges. Assume further that there exists a function g such that ${f'}_n \to$ g uniformly on (a,b) . Then

a) There exists a function f such that $f_n \to f$ uniformly on $\overline{(a,b)}$. b) For each x in (a,b) the derivative f '(x) exists and equals $g(x)$.

Let $\{f_n\}$ be a sequence of Riemann-integrable functions defined on [a,b]. Assume that $f \in \mathbb{R}$ on [a,b]. The sequence $\{f_n\}$ is said to converge the mean to f on [a,b],

And we write

$$
\lim_{n\to\infty}f_n=f\qquad\text{on [a,b].}
$$

if

lim $\lim_{n\to\infty}\int_a^b$ $\int_{a}^{b} |f_n(x) - f(x)|^2 dx = 0.$

If the inequality $|f(x) - f_n(x)| < \varepsilon$ holds for every x in [a,b], then we have $\int_{a}^{b} |f(x) - f_{n}(x)|^{2} dx \leq \mathcal{E}^{2}(b-a).$ Therefore uniform convergence of $\{f_n\}$ to f on [a,b] implies mean convergence.

THANK YOU

http://www.trinitycollegenkl.edu.in/