

TRINITY COLLEGE FOR WOMEN NAMAKKAL Department of Mathematics

REAL ANALYSIS- II 23PMA06- EVEN SEMESTER

INTRODUCTION TO MEASURE THEORY

Presented by Mrs. V.GOKILA Assistant Professor Department of Mathematics http://www.trinitycollegenkl.edu.in/

LEBESGUE OUTER MEASURE

The Lebesgue outer measure (or) outer measure of a set is given by

 $m^*(\mathbf{A}) = \operatorname{Inf} \sum l(l_n)$

Where the infimum is taken over all finite or countable collections of intervals I_n such that $A \subseteq \bigcup I_n$.

```
PROPERTIES:
```

 $\bowtie \ m^*(\mathbf{A}) \geq \mathbf{0}.$

 $\bowtie m^*(arphi) = 0$

 $\bowtie m^*(A) \leq m^*(B)$ if $A \subseteq B$

EXAMPLE: For any set A $m^*(A) = m^*(A+x)$, where A+x=[y+x;y\inA].

That means outer measure is translation invarient.

The outer measure of an interval equals its length.

LEBESGUE MEASURABLE (OR) MEASURABLE

The set E is lebesgue measureble or measurable if for each set A we have

 $m^*(A) \ge m^*(A \cap E) + m^*(A \cap c E)$ Here c E represents the complement of E.

EXAMPLE: If $m^*(A) = 0$ then E is measurable. **PROPERTY IF COUNTABLE SUBADDITIVITY:** For any sequence of set $\{F_i\}$, $m^*(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} m^*(E_i)$

A class of subsets of an arbitrary space X is said to be σ – Algebra if X belongs to the class and the class is closed under the formation of countable unions and of complements. We will denote by \mathcal{M} the class of lebesgue measurable sets.

* The class \mathcal{M} is a σ – Algebra.

* If $F \in \mathcal{M}$ and $m^*(F\Delta G) = 0$, Then G is measurable.

* Every interval is measurable.

* If $\{E_i\}$ is any sequence of disjoint measurable sets, then

 $m^*(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} m^*(E_i)$

BOREL SETS

We denote by \mathfrak{B} the σ – Algebra generated by the class of intervals of the form [a,b) its members are called the Borel sets of R.

* $\mathfrak{B} \subseteq \mathcal{M}$, That is every Borel sets is measurable.

* For any set A there exists a measurable set E containing A and such that $m^*(A) = m(E)$.

* Every non-empty open sets has positive measure.

* There exist uncountable sets of zero measure.

* Every countable set has measure zero.

THANK YOU

http://www.trinitycollegenkl.edu.in/