
Software Development Life Cycle (SDLC)

TRINITY COLLEGE FOR WOMEN

 NAMAKKAL
 DEPARTMENT OF COMPUTER SCIENCE

 SOFTWARE ENGINEERING 21UCSE03

 EVEN SEMESTER

PRESENTED BY :
 V.ABIRAMI

 ASSISTANT PROFESSOR

 DEPARTMENT OF COMPUTER SCIENCE

https://www.trinitycollege.nkl.edu.in

https://www.trinitycollege.nkl.edu.in/

SDLC Model

 A framework that describes the activities

performed at each stage of a software

development project.

Waterfall Model
• Requirements – defines

needed information, function,

behavior, performance and

interfaces.

• Design – data structures,

software architecture, interface

representations, algorithmic

details.

• Implementation – source

code, database, user

documentation, testing.

Waterfall Strengths

• Easy to understand, easy to use

• Provides structure to inexperienced staff

• Milestones are well understood

• Sets requirements stability

• Good for management control (plan, staff, track)

• Works well when quality is more important than

cost or schedule

Waterfall Deficiencies

• All requirements must be known upfront

• Deliverables created for each phase are
considered frozen – inhibits flexibility

• Can give a false impression of progress

• Does not reflect problem-solving nature of
software development – iterations of phases

• Integration is one big bang at the end

• Little opportunity for customer to preview the
system (until it may be too late)

When to use the Waterfall Model

• Requirements are very well known

• Product definition is stable

• Technology is understood

• New version of an existing product

• Porting an existing product to a new platform.

Rapid Application Model (RAD)

• Requirements planning phase (a workshop
utilizing structured discussion of business
problems)

• User description phase – automated tools
capture information from users

• Construction phase – productivity tools, such as
code generators, screen generators, etc. inside
a time-box. (“Do until done”)

• Cutover phase -- installation of the system, user
acceptance testing and user training

RAD Strengths

• Reduced cycle time and improved productivity
with fewer people means lower costs

• Time-box approach mitigates cost and schedule
risk

• Customer involved throughout the complete
cycle minimizes risk of not achieving customer
satisfaction and business needs

• Focus moves from documentation to code
(WYSIWYG).

• Uses modeling concepts to capture information
about business, data, and processes.

When to use RAD

• Reasonably well-known requirements

• User involved throughout the life cycle

• Project can be time-boxed

• Functionality delivered in increments

• High performance not required

• Low technical risks

• System can be modularized

Incremental Model Strengths

• Develop high-risk or major functions first

• Each release delivers an operational product

• Customer can respond to each build

• Uses “divide and conquer” breakdown of tasks

• Lowers initial delivery cost

• Initial product delivery is faster

• Customers get important functionality early

• Risk of changing requirements is reduced

Spiral SDLC Model

• Adds risk analysis,

and 4gl RAD

prototyping to the

waterfall model

• Each cycle involves

the same sequence of

steps as the waterfall

process model

Spiral Quadrant

Determine objectives, alternatives and constraints

• Objectives: functionality, performance,

hardware/software interface, critical success factors, etc.

• Alternatives: build, reuse, buy, sub-contract, etc.

• Constraints: cost, schedule, interface, etc.

Spiral Quadrant

Evaluate alternatives, identify and resolve risks

• Study alternatives relative to objectives and constraints

• Identify risks (lack of experience, new technology, tight

schedules, poor process, etc.

• Resolve risks (evaluate if money could be lost by

continuing system development

Spiral Quadrant

Develop next-level product

• Typical activites:

– Create a design

– Review design

– Develop code

– Inspect code

– Test product

 THANKS FOR WATCHING

